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Abstract: One of the many ills afflicting mathematics education is its excessively narrow 
focus on algebraic symbol manipulation to the detriment of more widely useful aspects of the 
mathematical sciences. The intensely vertical climb from algebra to calculus is needlessly 
narrow, producing more victims than successes and offering few opportunities for students to 
recoup from their inevitable mistakes. In this paper a proposal is made to restore balance and 
incentive to mathematics education in grades 6-12 by focusing on horizontal breadth and 
connectedness that offer multiple points of entry, numerous opportunities for catching up, and 
wide windows into the ways in which mathematical thinking pervades modern life. 
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Mathematics is our "invisible culture"(Hammond, 1978). Few people have any idea how 
much mathematics lies behind the artifacts and accoutrements of modern life. Nothing we use 
on a daily basis–houses, automobiles, bicycles, furniture, not to mention cell phones, 
computers, and Palm Pilots–would be possible without mathematics. Neither would our 
economy nor our democracy: national defense, Social Security, disaster relief, as well as 
political campaigns and voting all depend on mathematical models and quantitative habits of 
mind. 

Mathematics is certainly not invisible in education, however. Ten years of mathematics is 
required in every school and is part of every state graduation test. In the late 1980s 
mathematics teachers led the national campaign for high, publicly visible standards in K-12 
education. Nonetheless, mathematics is the subject that parents most often recall with anxiety 
and frustration from their own school experiences. Indeed, mathematics is the subject most 
often responsible for students' failure to attain their educational goals. Recently, mathematics 
curricula have become the subject of ferocious debates in school districts across the country. 
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My intention in writing this paper is to make visible to curious and uncommitted outsiders 
some of the forces that are currently shaping (and distorting) mathematics education. My 
focus is on the second half of the school curriculum, grades 6-12, where the major part of 
most students' mathematics education takes place. Although mathematics is an abstract 
science, mathematics education is very much a social endeavor. Improving mathematics 
education requires, among many other things, thorough understanding of pressures that shape 
current educational practice. Thus I begin by unpacking some of the arguments and relevant 
literature on several issues–tracking, employment, technology, testing, algebra, data, and 
achievement–that are responsible for much of the discord in current public discussion about 
mathematics education. 

Following discussion of these external forces, I examine the changing world of mathematics 
itself and its role in society. This leads to questions of context and setting, of purposes and 
goals, and quickly points in the direction of broader mathematical sciences such as statistics 
and numeracy. By blending the goals of mathematics, statistics, and numeracy, I suggest–in 
the final section of the paper–a structure for mathematics education in grades 6-12 that can 
help more students leave school equipped with the mathematical tools they will need for life 
and career. 

  

External Forces 

Beginning with A Nation at Risk (National Commission on Excellence in Education, 1983) 
and continuing through Before It's Too Late, the report of the Glenn Commission (National 
Commission on Mathematics and Science Teaching for the 21st Century, 2000), countless 
hand-wringing reports have documented deficiencies in mathematics education. Professional 
societies (American Mathematical Association of Two-Year Colleges, 1995; National Council 
of Teachers of Mathematics, 1989, 2000) have responded with reform-oriented 
recommendations while states (e.g., California, Virginia, Minnesota, Texas and dozens of 
others) have created standards and frameworks suited to their local traditions. Analysis of 
these proposals, much of it critical, has come from a wide variety of sources (e.g., Cheney, 
1997; Kilpatrick, 1997; Wu, 1997; Raimi, 1999; Gavosto, et al., 1999; Stotsky, 2000). In 
some regions of the country, these debates have escalated into what the press calls "math 
wars." 

Nearly one hundred years ago, Eliakim Hastings Moore, president of the young American 
Mathematical Society, argued that the momentum generated by a more practical education in 
school would better prepare students to proceed "rapidly and deeply" with theoretical studies 
in higher education (Moore, 1903). In the century that followed, mathematics flowered in 
both its practical and theoretical aspects, but school mathematics bifurcated: one stream 
emphasized mental exercises with little obvious practical value, the other stream stressed 
manual skills with no theoretical value. Few schools ever seriously followed Moore's advice 
of using practical education as a stepping stone to theoretical studies. 

Now, following a century of steady growth based on rising demand and a relatively stable 
curricular foundation, a new president of the American Mathematical Society warns his 
colleagues that the mathematical sciences are undergoing a "phase transition" from which 
some parts may emerge smaller and others dispersed (Bass, 1997). The forces that are 
creating this transition are varied and powerful, rarely under much control from educators or 
academics. I have selected only a few to discuss here. But I believe these few will suffice to 
illustrate the nuances that are too often overlooked in simplistic analyses of editorials, op-ed 
columns, and school board debate. I begin with the contentious issue of tracking. 
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Tracking 

Until quite recently, mathematics has never been seen as a subject to be studied by all 
students. For most of our nation's history, and in most other nations, the majority of students 
completed their school study of mathematics with advanced arithmetic–prices, interest, 
percentages, areas, and other topics needed for simple commerce. Only students exhibiting 
special academic interest studied elementary algebra and high school geometry; even fewer 
students, those exhibiting particular mathematical talent, took advanced algebra and 
trigonometry. For many generations the majority of students studied only commercial or 
vocational mathematics which contained little if any of what we now think of as high school 
mathematics. 

In recent decades, as higher education became both more important and more available, the 
percentage of students electing the academic track increased substantially. In the 1970s, only 
about 40% of U.S. students took two years of mathematics (algebra and geometry) in 
secondary school; 25 years later that percentage has nearly doubled. The percentage of high 
school students taking three years of mathematics has climbed similarly, from approximately 
30% to nearly 60% (National Science Board, 1996; Dossey and Usiskin, 2000). 

This shift of presumption of mathematics as a subject for an academic elite to mathematics as 
a core subject for all students represents the most radical transformation in the philosophy of 
mathematics education of the last century. In 1800 Harvard University expected of entering 
students only what was then called "vulgar" arithmetic. One century later Harvard expected a 
year of Euclid; two centuries later–in 2000–Harvard expects that most entering students have 
studied calculus. In no other subject has the expected level of accomplishment of college-
bound students increased so substantially. These changes signal a profound shift in public 
expectation of mathematical performance of high school graduates, a change that is sweeping 
the globe as nations race to keep up with rapidly advancing information technology. 
Secondary school mathematics is no longer a subject for the few, but for everyone. 

In response to the increasing need for mathematical competence for both higher education and 
the high-performance work place, the National Council of Teachers of Mathematics (NCTM) 
initiated the 1990s movement for national standards by recommending that all students learn 
a common core of high quality mathematics including algebra, geometry, and data analysis 
(NCTM, 1989). Dividing students into academic and non-academic tracks, NCTM argued, no 
longer makes the sense it once did when the U.S. was primarily an agrarian and assembly line 
economy. In this old system–remnants of which have not yet entirely disappeared– college-
bound students were introduced to algebra and geometry while those in vocational tracks 
were expected only to master arithmetic. Since algebra wasn't needed in yesterday's world of 
work, it wasn't taught to students in the lower tracks. This vocational tradition of low 
expectations (and low prestige) is precisely what NCTM intended to remedy with its call for a 
single core curriculum for all students. 

Yet even as "mathematics for all" has become the mantra of reform, schools still operate, 
especially in mathematics, with separate tracks as the primary strategy for delivery of 
curriculum. They are reinforced in this habit by teachers who find it easier to teach students 
with similar mathematical backgrounds and by parents who worry not that all children learn, 
but that their own children learn. Indeed, parents' anxiety about ensuring their own children's 
success has rapidly transformed an academic debate about tracking into one of the more 
contentious issues in education (e.g., Oakes, 1985; Oakes 1990; Sheffield, 1999). Thus, the 
most common critique of the NCTM standards is that by advocating the same mathematics for 
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all they fail to provide mathematically talented students with the stimulation they need and 
deserve.  

As the world of work has become increasingly quantitative, even the historic reasons for 
tracking have come under scrutiny. From advanced manufacturing to precision agriculture, 
from medical imaging to supermarket management, competitive industries now depend not 
just on arithmetic and percentages but on such tools as quantitative models, statistical quality 
control, and computer-controlled machines. Thus effective vocational programs must now set 
demanding mathematical standards that reflect the same kinds of higher-order thinking 
heretofore found only in the academic track (Steen and Forman, 1995). Although details of 
content differ, expectations for rigorous logical thinking are very similar. 

Indeed, mathematics in the workplace offers students opportunities to grapple with authentic, 
open-ended problems that involve messy numbers, intricate chains of reasoning, and lengthy 
multi-step solutions–opportunities that are rarely found in traditional college-prep 
mathematics curricula. By deploying elementary mathematics in sophisticated settings, 
modern work-based tasks give students not only motivation and context, but also a concrete 
foundation from which they can later abstract and generalize. 

Thus both traditional tracks–academic and vocational–have been pushed by their clienteles to 
increase significantly the level of mathematical performance expected of students. To be sure, 
not every school or program has responded equally to these heightened expectations. There 
are still large numbers of students who complete a vocational program (and sometimes an 
academic program) without really mastering any significant part of secondary school 
mathematics. But the direction of change is clear and the movement to eliminate dead-end 
courses is slowly gaining momentum. 

  

Employment 

During the last decade of the twentieth century, just as the movement for academic standards 
began, business and industry launched a parallel effort to articulate entry level skill standards 
for a broad range of industries (NSSB, 1998) as well as to suggest better means of linking 
academic preparation with the needs of employers (Bailey, 1997; Forman and Steen, 1998). 

Although preparing students for work has always been one purpose of education, teachers 
generally adopt broader goals and more academic purposes. Mathematics educators are no 
exception. The canonical curriculum of school mathematics–arithmetic, algebra, geometry, 
trigonometry, calculus–is designed primarily to introduce students to the discipline of 
mathematics and only incidentally to provide tools useful for jobs and careers. Were schools 
to design mathematics programs expressly for work and careers, the selection of topics, the 
order in which they are taken up, and the kinds of examples employed would be substantially 
different. 

The contrast between these two perspectives–mathematics in school vs. mathematics at work–
is especially striking (Forman and Steen, 1999). Mathematics in the workplace makes 
sophisticated use of elementary mathematics rather than, as in the classroom, elementary use 
of sophisticated mathematics. Work-related mathematics is rich in data, interspersed with 
conjecture, dependent on technology, and tied to useful applications. Work contexts often 
require multi-step solutions to open-ended problems, a high degree of accuracy, and proper 
regard for required tolerances. None of these features are found in typical classroom 
exercises. 
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Even core subjects within mathematics change when viewed from an employment 
perspective. Numbers in the workplace are embedded in context, used with appropriate units 
of measurement, and supported by computer graphics. They are used not just to represent 
quantities, but also to calculate tolerances and limit errors. Algebra is used not so much to 
solve equations as to represent complex relationships in symbolic form. Geometry is used not 
so much to prove results as for modeling and measuring, primarily in three dimensions. 

It should come as no surprise, therefore, to discover that employers are distressed by the 
mathematical and quantitative skills of high school graduates. It is not uncommon for 
employers in high performance industries such as Motorola, Siemens, and Michelin to find 
that only one in one twenty job applicants has the skills necessary to join their training 
programs, and that only one in fifty can satisfactorily complete job training. (This 
employment situation is the industrial face of the immense remediation problem facing 
colleges and universities.) 

It turns out that what current and prospective employees lack is not calculus or college 
algebra, but a plethora of more basic quantitative skills that could be taught in high school but 
are not (Murnane and Levy, 1996; Packer, 1997). Employees need statistics and three-
dimensional geometry, systems thinking and estimation skills. Even more important, they 
need the disposition to think through problems that blend quantitative data with verbal, visual, 
and mechanical information; the capacity to interpret and present technical information; and 
the ability to deal with situations when something goes wrong (MSEB, 1995). Although many 
jobs in the new economy require advanced training in mathematics, most do not. Nonetheless, 
all require a degree of numeracy unheard of a generation earlier as computers, data, and 
numbers intrude into the language of ordinary work. 

This broader perspective of employers is well expressed in an influential government report 
entitled What Work Requires of Schools (Secretary's Commission on Achieving Necessary 
Skills, 1991). Instead of calling for subjects such as mathematics, physics, and history, this 
so-called "SCANS" report asks for competencies built on a foundation of basic skills (reading, 
writing, listening, speaking, arithmetic), thinking skills (creative thinking, reasoning, problem 
solving, decision-making, processing symbols, acquiring and applying new knowledge), and 
personal qualities (responsibility, self-esteem, sociability, self-management, integrity). These 
competencies, similar to what in other countries are sometimes called "key skills," are: 

• Resources: Time, money, material, facilities, human resources. 
• Interpersonal: Teamwork, teaching, service, leadership, negotiation, 
and diversity. 
• Information: Acquire, evaluate, organize, maintain, interpret, 
communicate, transform. 
• Systems: Understand, monitor, and improve social, organizational, 
and technological systems. 
• Technology: Select, apply, and maintain technology. 

Mathematical thinking is embedded throughout these competencies, not just in the set of basic 
skills but as an essential component of virtually every competency. Reasoning, making 
decisions, solving problems, managing resources, interpreting information, understanding 
systems, applying technology, ... all these and more build on quantitative and mathematical 
acumen. But they do not necessarily require fluency in factoring polynomials, deriving 
trigonometric identities, or other arcana of school mathematics (Packer, 2001). 
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Technology 

The extraordinary ability of computers to generate and organize data has opened up an entire 
new world to mathematical analysis. Mathematics is the science of patterns (Steen, 1988; 
Devlin, 1994) and technology enables mathematicians (and students) to study patterns as they 
never could before. In so doing technology offers mathematics what laboratories offer 
science: an endless source of evidence, ideas, and conjectures. Technology also offers both 
the arts and sciences a new entrée into the power of mathematics: fields as diverse as cinema, 
finance, and genetics now deploy computer-based mathematical tools to discover, create, and 
explore patterns.  

Modern computers manipulate data in quantities that overwhelm traditional mathematical 
tools. Computer chips have now finally achieved sufficient speed and power to create visual 
displays that make sense to the human eye and mind. Already visualization has been used to 
create new mathematics (fractals), to develop new proofs (of minimal surfaces), to provide 
tools for new inferences (in statistics), and to improve instruction (geometer's sketchpad). 
Indeed, the computer-enhanced symbiosis of eye and image is fundamentally changing what 
it means to understand mathematics. 

Computers are also changing profoundly how mathematics is practiced. The use of 
spreadsheets for storing, analyzing, and displaying data is ubiquitous in all trades and crafts. 
Scientists and engineers report that, for students in these fields, facility with spreadsheets (as 
well as other mathematical software) is as important as conceptual understanding of 
mathematics, and more valuable than fluency in manual computation (Barker, 2000). With 
rare exceptions (primarily theoretical scientists and mathematicians) mathematics in practice 
means mathematics mediated by a computer. 

As the forces unleashed by the revolution in technology change the character of mathematics, 
so they also impact mathematics education. It has been clear for many years that technology 
alters priorities for mathematics education (e.g., MSEB, 1990). Much of traditional 
mathematics (from long division to integration by parts) was created not to enhance 
understanding but to provide a means of calculating results. This mathematics is now 
embedded in silicon, so training people to implement these methods with facility and 
accuracy is no longer as important as it once was. At the same time, technology has increased 
significantly the importance of other parts of mathematics (e.g., statistics, number theory, 
discrete mathematics) that are widely used in information-based industries. 

Calculators and computers have also had enormous–and controversial–impact on mathematics 
pedagogy. Wisely used, they can help students explore patterns and learn mathematics by 
direct experience (Askew and William, 1995), a process heretofore only possible through 
tedious and error-prone manual methods. Unwisely used, they become an impediment to 
students' mastery of basic skills or, even worse, a device that misleads students about the true 
nature of mathematics. Students who rely inappropriately on calculators often confuse 
approximations with exact answers, thereby depriving themselves of any possibility of 
recognizing or appreciating the unique certainty of mathematical deduction.  

In the long run, technology's impact on mathematics education may be much broader than 
merely influencing changes in content or pedagogy. The rapid growth of a technology-driven 
economy that creates wealth as much from information and ideas as from labor and capital 
magnifies enormously the importance of intellectual skills such as mathematics. It also 
increases the social costs of differential accomplishment in school mathematics. Because of 
technology, it matters much more now than earlier if a student leaves school with weak 
mathematical skills. 
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At the same time computers and calculators are increasing dramatically the number of people 
who use mathematics, many of whom are not well educated in mathematics. Previously, only 
those who learned mathematics used it. Today many people use mathematical tools for 
routine work with spreadsheets, calculators, and financial systems, tools that are built on 
mathematics they have never studied and do not understand. This is a new experience in 
human history, with problematic consequences that we are only gradually discovering. 

Finally, as the technology-driven uses of mathematics multiply, pressure will mount on 
schools to teach both information technology as well as more and different mathematics 
(NRC, 2000). At the same time, and for the same reasons, increasing pressure will be applied 
on teachers and schools to ensure that no child is left behind. Alarms about the "digital 
divide" have already sounded and will continue to ring loudly in the body politic. The 
pressure on mathematics to form a bipartisan alliance with technology in the school 
curriculum will be enormous. This could easily lead to a new type of tracking–one track 
offering minimal skills needed to operate the new technology with little if any understanding, 
the other offering mathematical understanding as the surest route to control of technology. 
Evidence of the emergence of these two new cultures is not hard to find.  

  

Testing 

Largely because of its strong tradition of dispersed authority and local control, the United 
States has no system to ensure smooth articulation between high school and college 
mathematics programs. Instead, students encounter a chaotic mixture of traditional and 
standards-based high school curricula; AP exams in calculus, statistics, and computer science; 
very different SAT and ACT college entrance exams; diverse university admissions policies; 
skills-based mathematics placement exams; and widely diverse first-year curricula in college 
including several levels of high school algebra (elementary, intermediate, and "college") and 
of calculus ( "hard" (mainstream), "soft," and "reformed").  

This cacophony of tests and courses is not only confusing and inefficient, but it is also 
devastating for students who lack the support of experienced adult advocates. Following the 
rules and passing the tests does not necessarily prepare students either for employment or for 
continuing education. As a consequence, many new graduates find that they "can’t get there 
from here." For some students, mathematical education turns out to be a "hoax" (Education 
Trust, 1999). 

The negative consequences of this incoherent transition have been magnified greatly in recent 
years as states began, for the first time, to institute meaningful ("high-stakes") exit exams that 
students must pass to receive a high school diploma (Gardner, 1999; Sacks, 2000; Shrag, 
2000). Many states have been shocked by the low passing rates on such exams, and have had 
to retrench on their graduation requirements (Groves, 2000). At the same time, parents and 
politicians have increased their emphasis on tests such as SAT, ACT, and AP that have 
significant influence in college admissions. 

Despite all this testing, once students arrive in college, hundreds of thousands find themselves 
placed in remedial courses such as intermediate algebra where they are required to master 
arcane skills that are rarely encountered in adult life. As more students pursue postsecondary 
study–both before and while working–and as these students bring to their studies increasingly 
diverse backgrounds and career intentions, the incoherent and arbitrary testing in the 
transition from school to college becomes increasingly untenable. 
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A rational system of mathematics education should provide clear and consistent messages 
about what knowledge and skills are expected at each educational level. Ideally, graduation 
examinations from secondary school would also certify, based on different scores, admission 
to college without remediation. Such a system would require that everyone involved in the 
transition from high school to college concur on the expected outcomes of high school 
mathematics, and that these goals be reflected in the tests. To be politically acceptable, 
transition tests must be within reach of most students graduating from today's high schools, 
yet to be educationally useful they must ensure levels of performance appropriate to life, 
work, and study after high school. No state has yet figured out how to meet both of these 
objectives. 

  

Algebra 

In the Middle Ages, algebra meant calculating by rules (algorithms). During the Renaissance, 
it came to mean calculation with signs and symbols–using x's and y's instead of numbers. 
(Even today, lay persons tend to judge algebra books by the symbols they contain: they 
believe that more symbols mean more algebra, more words, less.) In subsequent centuries, 
algebra came to be primarily about solving equations and determining unknowns. School 
algebra still focuses on these three aspects: following procedures, employing letters, and 
solving equations. 

In the twentieth century algebra moved rapidly and powerfully beyond its historical roots. 
First it became what we might call the science of arithmetic–the abstract study of the 
operations of arithmetic. As the power of this "abstract algebra" became evident in such 
diverse fields as economics and quantum mechanics, algebra evolved into the study of all 
operations, not just the four found in arithmetic. Thus did it become truly the language of 
mathematics and, for that reason, the key to access in our technological society (Usiskin, 
1995). 

Indeed, algebra is now, in Robert Moses' apt phrase, "the new civil right" (Moses, 1995). In 
today's society, algebra means access. It unlocks doors to productive careers and democratizes 
access to big ideas. As an alternative to dead-end courses in general and commercial 
mathematics, algebra serves as an invaluable engine of equity. The notion that by identifying 
relationships we can discover things that are unknown–"that we can find out what we want to 
know"–is a very powerful and liberating idea (Malcolm, 1997). 

Not so long ago, high school algebra served as the primary filter to separate college-bound 
students from their work-bound classmates. Then advocates for educational standards began 
demanding "algebra for all," a significant challenge for a nation accustomed to the notion that 
only some could learn algebra (Steen, 1992; Chambers, 1994; Lacampagne, 1995; Silver 
1997; NCTM, 1998). More recently this clamor has escalated to a demand that every student 
complete algebra by the end of eighth grade (Steen, 1999; Achieve 2001). 

The recent emphasis on eighth-grade algebra for all has had the unfortunate side effect of 
intensifying a distortion that algebra already imposes on school mathematics. One key 
distortion is an overemphasis on algebraic formulas and manipulations. Students quickly get 
the impression from algebra class that mathematics is manipulating formulas. Few students 
make much progress on the broad goals of mathematics in the face of a curriculum dominated 
by the need to become fluent in algebraic manipulation. Moreover, overemphasis on algebra 
drives many students away from mathematics: most students who leave mathematics do so 
because they cannot see any value in manipulating strings of meaningless symbols. 
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What's worse, the focus on formulas as the preferred methodology of school mathematics 
distorts the treatment of other important parts of mathematics. For example, despite the 
complexity of its algebraic formula, the bell-shaped normal distribution is as ubiquitous in 
daily life as are linear and exponential functions, and far more common than quadratic 
equations. As citizens, it is very helpful to understand that repeated measurements of the same 
thing (length of a table) as well as multiple measurements of different although similar things 
(heights of students) tend to follow the normal distribution. Knowing why some distributions 
(e.g., salaries, sizes of cities) do not follow this pattern is equally important, as is 
understanding something about the tails of the normal distribution–which can be very helpful 
in thinking about risks (or SAT scores). 

Yet despite its obvious value to society, the normal distribution is all but ignored in high 
school mathematics, whereas quadratic and periodic functions are studied extensively. Many 
reasons can be advanced to explain this imbalance, e.g., that mathematicians favor models of 
the physical over the behavioral sciences. But surely one of the most important is that the 
algebraic formula for the normal distribution is quite complex and cannot be fully understood 
without techniques of calculus. The bias in favor of algebraic formulas as the preferred style 
of understanding mathematics–instead of graphs, tables, computers, or verbal descriptions–
causes mathematics teachers to omit from the high school curriculum what is surely one of 
the most important and most widely used tools of modern mathematics. 

That a subject that for many amounts to little more than rote fluency in manipulating 
meaningless symbols came to occupy such a privileged place in the school curriculum is 
something of a mystery, especially since so many parents, as students, found it unbearable. 
Perhaps more surprising is algebra's strong support among those many successful professional 
who, having mastered algebra in school, found no use for it in their adult lives. Why is it that 
we insist on visiting on eighth graders a subject that, more than any other, has created 
generations of math-anxious and math-avoiding adults?  

Many argue on the simple pragmatic "civil right" ground that algebra is, wisely or unwisely, 
of central importance to the current system of tests that govern the school-college transition 
(not to mention providing essential preparation for calculus which itself has taken on 
exaggerated significance in this same transition). But this, of course, is the ultimate circular 
argument. We need to study algebra to pass tests that focus on algebra. And why do the tests 
focus on algebra? Because it is a part of mathematics that virtually all students study. 

Others may cite, as grounds for emphasizing algebra, the widespread use of formulas in many 
different fields of work. However, this use is only a tiny part of what makes up the school 
subject of algebra. Moreover, most business people give much higher priority to statistics than 
to algebra. Some mathematicians and scientists assert that algebra is the gateway to higher 
mathematics–but this is so only because our curriculum makes it so. Much of mathematics 
can be learned and understood via geometry, or data, or spreadsheets, or software packages. 
Which subjects we emphasize early and which later is a choice, not an inevitability. 

Lurking behind the resurgent emphasis on algebra is a two-edged argument concerning 
students who are most likely to be poorly educated in mathematics–poor, urban, first 
generation, and minorities. Many believe that such students, whose only route to upward 
mobility is through school, are disproportionately disadvantaged if they are denied the 
benefits that in our current system only early mastery of algebra can confer. Others worry that 
emphasis on mastering a subject that is difficult to learn and not well taught in many schools 
will only exacerbate existing class differences by establishing algebra as a filter that will 
block anyone who does not have access to a very strong educational environment. 
Paradoxically, and unfortunately, both sides in this argument appear to be correct. 
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Data 

Although algebra and calculus may be the dominant goals for school mathematics, in the real 
world mathematical activity usually begins not with formulas but with data. Measurements 
taken at regular intervals–be they monthly sales records, hourly atmospheric pressure 
readings, or millisecond samples of musical tones–form the source data for mathematical 
practice. Rarely if ever does nature present us with an algebraic formula to be factored or 
differentiated. Although the continuous model of reality encapsulated by algebra and calculus 
is a powerful tool for developing theoretical models, real work yielding real results must 
begin and end in real data.  

In past eras mathematics relied on continuous models since working with real data was too 
cumbersome. An algebraic or differential equation with three or four parameters could 
describe reasonably well the behavior of phenomena with millions of potential data points. 
But now computers have brought digital data into the heart of mathematics. They enable 
practitioners of mathematics to work directly with data rather than with the simplified 
continuous approximations that functions provide. Moreover, they have stimulated whole new 
fields of mathematics going under names such as combinatorics, discrete mathematics, and 
exploratory data analysis. 

Thus as school mathematics has become increasingly preoccupied with the role of algebra, 
many users of mathematics have discovered that combinatorial and computer methods are of 
far greater utility. Whereas school algebra deals primarily with models and continuous 
functions, combinatorics and data analysis deal with measurements and discrete data. The one 
reflects a Platonic world of ideal objects, the other, the realism of measured quantities. In the 
Platonic world, theorems are eternal; in the real world computations are contingent. This 
contrast between the ideal and the utilitarian can be seen from many different perspectives 
ranging from philosophical to pedagogical. 

One such domain is education. The competition for curricular time between functions and 
data reflect fundamental disagreements about the nature of mathematics as a discipline and as 
a school subject. Traditionally, and philosophically, mathematics has been thought of as a 
science of ideal objects–numbers, quantities, and shapes that are precisely defined and thus 
amenable to logically precise relations known as theorems. In practice, mathematics presents 
a more rough-and-ready image: it is about solving problems in the real world that involve 
measured quantities that are never perfectly precise. Tension between these two views of 
mathematics has a long history. But now, with the advent of computers, this tension has 
resurfaced with even greater force and significance. At its core, the debate is about the 
definition of mathematics as a discipline. 

  

Achievement 

Strained by a growing number of forces and pressures (only some of which are discussed 
here), U.S. mathematics educators have found it very difficult to improve student 
achievement–education's bottom line. For at least the last half-century, graduates of U.S. 
secondary schools have lagged behind their peers in other nations, especially those of the 
industrial world and the former Communist bloc. Documentation of this deficiency has been 
most consistent in mathematics and science, subjects that are relatively common in the 
curricula of different nations and that are examined internationally at regular intervals. Some 
U.S. analysts seek to explain (or excuse) poor U.S. performance by hypothesizing a negative 
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impact of our relatively heterogeneous population, or conjecturing that a larger percentage of 
U.S. students complete secondary school, or arguing that other nations (or the U.S.) did not 
test a truly random sample. But despite these exculpatory claims, a central stubborn fact 
remains: on international tests administered over several decades to similarly educated 
students, mathematics performance of U.S. 8th and 12th grade students has always been well 
below international norms. 

The most recent headlines came from TIMSS, the Third International Mathematics and 
Science Study, and its repeat, TIMSS-R. The TIMSS results, confirmed by TIMSS-R, 
document a decline in performance of U.S. students, as compared with their peers in other 
nations, as they progress through school (International Study Center, 2000). Fourth graders in 
the U.S. have command of basic arithmetic on a par with students in most other nations. But 
the longer U.S. students study mathematics, the worse they become at it, comparatively 
speaking (Beaton, et al., 1996; Schmidt, et al., 1996). Middle school mathematics, especially, 
exhibits "a pervasive and intolerable mediocrity" (Silver, 1998) that sends students into a 
downward glide that leaves them in 12th grade with a mathematical performance that is 
virtually at the bottom of all industrialized nations. Even the best U.S. 12th-grade students 
who are enrolled in advanced mathematics courses perform substantially below the average 
12th grade students in most other nations (National Center for Education Statistics, 1998). 

The TIMSS findings are consistent with other analyses of U.S. student achievement from an 
international perspective (McKnight, et al., 1987; Lapointe, 1989). They document the 
consequences of a leisurely curriculum in the last half of elementary school when textbooks 
fail to introduce much that has not already been covered (Flanders, 1987). What makes 
matters even worse is the longstanding performance differences among white, black, and 
Hispanic students at all grade levels (Campbell, et al., 1996, National Center for Education 
Statistics, 2000). Although this performance gap has been narrowing on tasks that assess 
procedural knowledge and skills, substantial differences remain on tasks that assess 
conceptual understanding, mathematical reasoning, and problem solving (Secada, 1992; 
Kenney and Silver, 1996). Thus at a time of increasing integration of a global economy, large 
numbers of U.S. students, disproportionately minority, leave school significantly behind 
world norms in the language of the information age–mathematics. 

Not surprisingly, more detailed examination of the TIMSS results reveals that U.S. students 
perform relatively better on some mathematical topics and worse on others. For example, 
relative to their international peers, our eighth grade students are especially weak in geometry, 
measurement, and proportional reasoning, although closer to average in arithmetic and 
algebra. A similar profile emerged from the Second International Mathematics Study (SIMS) 
conducted in 1981-82 (Crosswhite, et al., 1986; McKnight, et al., 1987). Interestingly, the 
topics on which our students lag behind international norms are precisely the areas most often 
cited by non-educators as most important for adult life–for example, measurement, geometry, 
and proportional thinking. 

  

Quantitative Practices 

The forces created by differential tracking, needs of employment, impacts of technology, 
misaligned testing, overemphasis on algebra, underemphasis on data, and student 
underachievement exert profound influence on schools, teachers, and students. These forces 
shape and often distort the educational process, constraining teachers and enticing students in 
directions that are rarely well aligned with sound educational goals. To have a significant and 
lasting effect, changes proposed for school mathematics must take these external forces into 
account, seeking wherever possible to use them for advantageous leverage. 
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School mathematics also needs to be responsive to changes in mathematics itself–its scope, 
practice, methods, and roles in society. Most people think of mathematics as unchanging, as a 
collection of formulas and facts passed down like ancient texts from earlier generations. 
Nothing could be further from the truth. Mathematical discovery has grown at an amazing 
rate throughout the past century, accelerating in recent decades as computers provide both 
new problems to solve and new tools with which to solve old problems. At the same time, and 
for much the same reason, the roles played by mathematics in society have expanded at a 
phenomenal rate. No longer confined to specialized fields such as engineering or accounting, 
mathematical methods permeate work and life in the information age. 

As mathematics has expanded rapidly to provide models for computer-based applications, so 
too has statistics, the science of data. Although not strictly part of mathematics, statistics is a 
hybrid discipline with roots in mathematics and highly visible branches in government 
performance, economic policy, and medical research. Especially since 1989 when NCTM 
called for greater emphasis on statistics and data analysis in the school curriculum, statistics 
has become part of the agenda for school mathematics. Arguably, for most students it may be 
the most important part. 

As mathematical ideas increasingly permeate public policy, those concerned with citizenship 
and democracy have begun to see a real need for quantitative practices not readily subsumed 
by either mathematics or statistics. These practices, called "numeracy" elsewhere, are 
relatively new in the U.S. educational context. Indeed, the parallels between numeracy and 
literacy as marks of an educated person are really no more than ten or fifteen years old. As the 
disciplines of mathematics and statistics have expanded in scope and influence, their impact 
on public life has created a rising demand for the interdisciplinary (or non-disciplinary) 
capacity we call numeracy. Mathematics and numeracy are two sides of the same coin–the 
one Platonic, the other pragmatic, the one abstract, the other contextual.  

As all three forms of quantitative practice–mathematics, statistics, and numeracy–evolve 
under the selective pressures of information technology and a global economy, schools must 
find ways to teach all three. Before exploring how this might be done, we will first elaborate 
on the nature of these three domains of quantitative practice. 

  

Mathematics 

During the last half-century, as mathematics in school grew from an elite to a mass subject, 
mathematics expanded into a portfolio of mathematical sciences that now includes, in 
addition to traditional pure and applied mathematics, subjects such as statistics, financial 
mathematics, theoretical computer science, operations research (the science of optimization), 
and more recently, financial mathematics and bioinformatics. (It is a little appreciated fact 
that most of the advances–and fortunes–being made in investments, genetics, and technology 
all derive from clever applications of sophisticated mathematics.) Although each of these 
specialties has its own distinctive character, methodologies, standards, and accomplishments, 
they all build on the same foundation of school and college mathematics.  

Mathematics is far more than just a tool for research. In fact, its most common uses–and the 
reason for its prominent place in school curricula–are routine applications that are now part of 
all kinds of jobs. Examples include: 

• Testing products without destroying them. 
• Managing investments to minimize risks while maximizing returns. 
• Creating terrain maps for farmers that reflect soil chemistry and moisture levels. 
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• Processing photographic images to transform, clarify, and combine. 
• Detecting disease by monitoring changes in medical images and data. 
• Creating special cinematic effects such as moving clouds and rushing water. 
• Anticipating changes in production processes. 
• Controlling risks by managing distribution of hazardous materials. 
• Designing products to minimize costs of construction, maintenance, and 
operation. 
• Interpreting vital signs displayed as dynamic graphs of biological data. 
• Minimizing total costs of materials, inventory, time, shipments, and waste. 

If we look at these common uses of mathematics from the perspective of the school 
curriculum, we see that mathematics at work is very different from mathematics in school: 

• Arithmetic is not just about adding, subtracting, multiplying and dividing, but 
about units and conversions, measurements and tolerances, spreadsheets 
and calculators, estimates and accuracy. 

• Numbers are not just about place value and digits, but also about notation 
and coding, index numbers and stock market averages, employment indices 
and SAT scores.  

• Geometry is not just about the properties of circles, triangles, areas, and 
volumes, but also about shapes and measurements in three dimensions, 
about reading maps and calculating latitude and longitude, about using 
dimensions to organize data, and about modern tools such as global 
positioning systems (GPS) and geographic information systems (GIS). 

• Statistics is not just about means, medians and standard deviations, but also 
about visual displays of quantitative ideas (for example, scatter plots and 
quality control charts) as well as random trials and confidence intervals. 

• Logic is not just about mathematical rigor and deductive proof, but about 
hypotheses and conjectures, causality and correlation, random trials and 
statistical inference.  

• Probability is not just about calculating combinations, but also about 
estimating and comparing risks (for example, of accidents, diseases, or 
lotteries) as well as about chance and randomness (in coincidences or 
analyses of bias claims).  

• Applications are not just about solving word problems, but about collecting, 
organizing, and interpreting data; allocating resources and negotiating 
differences; understanding annuities and balancing investments. 

• Proof is not just about logical deduction, but also about conjectures and 
counterexamples, scientific reasoning and statistical inference, and legal 
standards such as preponderance of evidence or beyond reasonable doubt. 

• Technology is not just about doing arithmetic, performing algebra, or creating 
graphs, but about facility with spreadsheets, statistical packages, presentation 
software, and Internet resources.  

Mathematics in practice is far subtler than mathematics in school. Elementary mathematical 
ideas applied in sophisticated settings are amazingly powerful, but rarely appreciated. An 
important conclusion from this examination of mathematics in practice is that topics common 
to school mathematics have surprising depth and power in their own right, quite apart from 
their role in providing prerequisites for college mathematics. Indeed, one could productively 
pursue applications of school topics for several years without ever taking up the more abstract 
concepts of calculus (or even so-called "college" algebra). But no one does this, preferring 
instead to rush students as quickly as possible to the abstractions of calculus.  
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Statistics 

The age of information is an age of numbers. We are surrounded by data that both enrich and 
confuse our lives. Numbers provide descriptions of daily events, from medical reports to 
political trends and social policy. News reports are filled with charts and graphs, while 
politicians debate quantitatively based proposals that shape public policy in education, health, 
and government. 

The study of numbers is usually associated with statistics. In schools, the term "quantitative 
literacy" is often employed as an informal synonym for "elementary statistics." Although 
statistics is today a science of numbers and data, historically (and etymologically) it is the 
science of the state. Created in the Napoleonic era when central governments used data about 
population, trade, and taxes to assert control over distant territory, the value of systematic 
interpretation of data quickly spread to agriculture, medicine, economics, and politics. Now 
statistics underlies not only every economic report and census, but also every clinical trial and 
opinion survey in modern society. 

However valuable statistics may be, it seems never to have shared the curricular privilege 
accorded to mathematics. Indeed, high school mathematics devotes relatively little emphasis 
to topics designed to build a numbers-based bridge from arithmetic of the elementary grades 
to the subtle and fascinating world of data and statistics. Now computers have significantly 
transformed the potential, power, and pedagogy of statistics (Hoaglin, 1992) and this 
evolution has profoundly changed the relation between mathematics, statistics, and their many 
client disciplines (Moore and Cobb, 2000). It is past time for statistics to claim its proper 
place in the school mathematics curriculum. 

One impediment statistics faces is a public perception that it is not as rigorous as calculus. 
This perception is no doubt due to its association with the "soft" sciences of psychology and 
economics, in contrast with the "hard" calculus-based disciplines of physics and engineering. 
But evidence from the new AP statistics course confirms what many teachers have long 
known–that the subtle reasoning involved in data-based statistical inference is harder for 
students to grasp and explain than comparable symbol-based problems and proofs in a typical 
calculus course. Properly taught, statistics is probably a better vehicle than algebra and 
calculus for developing students' capacity to reason logically and express complex arguments 
clearly. 

Statistics is also very practical, far more so than any part of the algebra-trigonometry-calculus 
sequence that dominates school mathematics. Every issue in the daily newspaper, every 
debate that citizens encounter in their local communities, every exhortation from advertisers 
invites analysis from a statistical perspective. Statistical reasoning is subtle and strewn with 
counterintuitive paradoxes. It takes a lot of experience to make statistical reasoning a natural 
habit of mind (Nisbett, 1987). That's why it is important to start early and reinforce at every 
opportunity. 

  

 

Numeracy 

The special skills required to interpret numbers–what we call numeracy or quantitative 
literacy– are rarely mentioned in national education standards or state frameworks. 
Nonetheless, these skills nourish the entire school curriculum, including not only the natural, 
social, and applied sciences but also language, history, and fine arts (Steen, 1990). They 
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parallel and enhance the skills of literacy–of reading and writing–by adding to words the 
power of numbers. 

Numeracy lies at the intersection of statistics, mathematics, and democracy. Like statistics, 
numeracy is centered on interpretation of data; like mathematics, numeracy builds on 
arithmetic and logic. But the unique niche filled by numeracy is to support citizens in making 
decisions informed by evidence. Virtually every major public issue–from health care to social 
security, from international economics to welfare reform–depends on data, projections, 
inferences, and the kind of systematic thinking that is at the heart of quantitative literacy. So 
too are many aspects of daily life, from selecting telephone services to buying a car, from 
managing household expenses to planning for retirement. For centuries verbal literacy has 
been recognized as a free citizen's best insurance against ignorance and society's best bulwark 
against demagoguery. So today, in the age of data, numeracy joins literacy as the guarantor of 
liberty, both individual and societal (Steen, 1998, 2000). 

Numeracy is largely an approach to thinking about issues that employs and enhances both 
statistics (the science of data) and mathematics (the science of patterns). Yet unlike statistics 
which is primarily about uncertainty, numeracy is often about the logic of certainty. And 
unlike mathematics which is primarily about a Platonic realm of abstract structures, numeracy 
is often anchored in data derived from and attached to the empirical world. Surprisingly to 
some, this inextricable link to reality makes quantitative reasoning every bit as challenging 
and rigorous as mathematical reasoning. 

Mathematics teachers often resist emphasizing data since the subject they are trying to teach 
is about Platonic ideals–numbers and functions, circles and triangles, sets and relationships. 
However, employers and parents are often frustrated by this stance since school graduates so 
often seem inexperienced in dealing with data, and the real world presents itself more often in 
terms of data than in the Platonic idealizations of mathematics.  

Although numeracy depends on familiar mathematical topics from arithmetic, algebra, and 
geometry, its natural framework is commonly described in broader terms (NCED, 2001). 
Some are foundational, focused on learned skills and procedures: 

• Practical Skills. Using elementary mathematics in a wide variety of common 
situations. 

• Confidence with Mathematics. Being comfortable with numbers and at ease in 
applying quantitative methods. 

• Number Sense. Estimating with confidence; employing common sense about 
numbers; exhibiting accurate intuition about measurements. 

• Mathematics in Context. Using mathematical tools in settings where the 
context provides both meaning and performance expectations. 

• Prerequisite Knowledge. Using a wide range of algebraic, geometric, and 
statistical tools that are required for many fields of postsecondary education. 

Other elements of numeracy live on a higher cognitive plateau and represent capacities as 
useful and ingrained as reading and speaking: 

• Interpreting Data. Reasoning with data, reading graphs, drawing inferences, 
recognizing sources of error. 

• Making Decisions. Using logical and quantitative methods to solve problems 
and make decisions in everyday life. 

• Symbol Sense. Employing, reading, and interpreting mathematical symbols 
with ease; exhibiting good sense about their syntax and grammar.  
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• Thinking Logically. Analyzing evidence, reasoning carefully, understanding 
arguments, questioning assumptions, detecting fallacies, and evaluating risks.  

• Cultural Appreciation. Understanding the nature and history of mathematics, 
its role in scientific inquiry and technological progress, and its importance for 
comprehending issues in the public realm. 

Whereas the mathematics curriculum has historically focused on school-based knowledge, 
numeracy involves mathematics acting in the world. Typical numeracy challenges involve 
real data and uncertain procedures but require primarily elementary mathematics. In contrast, 
typical school mathematics problems involve simplified numbers and straightforward 
procedures but require sophisticated abstract concepts. The test of numeracy, as of any 
literacy, is whether a person naturally uses appropriate skills in many different contexts. 

  

School Mathematics 

For various reasons having to do with a mixture of classical tradition and colonial influence, 
the school curriculum in mathematics is virtually the same all over the world. Fifteen years 
ago, the secretary of the International Commission on Mathematics Instruction reported that 
apart from local examples, there were few significant differences to be found in the 
mathematics textbooks used by different nations around the world (Howson, 1986). Even a 
country as culturally different as Japan follows a canonical "western" curriculum with only 
minor variations (Nohda, 2000). Detailed review of U.S. practice in the mid-1980s showed 
little significant change from the practice of previous decades (Hirsch,1985). So at the end of 
the twentieth century, a birds-eye view of school mathematics reveals little substantive 
variation in either time or space. 

Not surprisingly, however, a more refined analyses prepared in advance of the TIMSS study 
reveals subtle differences in scope, sequence, and depth (Howson, 1991). The TIMSS study 
itself included an extensive analysis of curricula (and of teaching practices) in participating 
nations. This analysis showed significant variation in the number of topics covered at 
different grade levels, a variation that appears to be inversely correlated with student 
performance (Schmidt, 1997). In the case of mathematics education, it seems, more really is 
less: too many topics covered superficially lead to less student learning. The consensus of 
experts who have studied both domestic and international assessments is that neither the 
mathematics curriculum nor the classroom instruction is as challenging in the United States as 
it is in many other countries. 

This tradition of mathematics programs that are a "mile wide and an inch deep" is not easy to 
change. In contrast to most nations whose central ministries of education prescribe the goals 
and curriculum of school mathematics, the United States has no legally binding national 
standards. That is not to say, however, that we do not have a national curriculum. Textbooks, 
traditions, and standardized tests do as much to constrain mathematics teaching in the United 
States as national curricula do in other nations. All too often, these constraints produce what 
analysts of the Second International Mathematics Study (SIMS) called an "underachieving" 
curriculum (McKnight, 1987). 

In response to SIMS, the National Council of Teachers of Mathematics prepared an 
innovative set of standards for school mathematics–a "banner" for teachers to rally behind in a 
national crusade to raise classroom expectations and student performance (NCTM, 1989). Ten 
years later NCTM revised these standards, producing a much more tightly focused set of 
goals to guide states and districts as they developed their own frameworks and curriculum 
guides (NCTM, 2000). This revised document, entitled Principles and Standards for School 
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Mathematics (PSSM), is organized around five so-called "content" standards (number and 
operation, algebra, geometry, measurement, data analysis and probability) and five "process" 
standards (problem solving, reasoning and proof, communication, connections, and 
representation).  

The first five PSSM standards (see Appendix A) correspond to topics and chapter titles found 
in most mathematics textbooks. They represent the traditional content of mathematics: 
numbers, symbols, functions, shapes, measurements, probability, and the like. The second 
five, interestingly, fit better with the skills employers seek or the numeracy that citizenship 
requires–e.g., to evaluate arguments, to communicate quantitative ideas, to interpret real-
world phenomena in mathematical terms. This distinction resonates with what we often hear 
from users of mathematics: it is not so much the specific content of mathematics that is 
valuable as it is the process of thinking that this content represents. Only mathematicians and 
mathematics teachers really worry much about the specifics of content. 

Were all ten NCTM standards stressed equally in each grade from 6 to 12, and enriched with 
significant real-world examples, many more students would emerge from high school well 
prepared in mathematics, statistics, and numeracy. But this is far from true for today's 
curricula. As assessment data shows, the content goals of arithmetic and algebra are stressed 
at the expense of geometry, measurement, probability, and data analysis. In terms of the 
process goals, only problem solving is consistently stressed; the others–reasoning and proof, 
communication, connections, representation–are barely visible in the curriculum and totally 
absent from common standardized tests. The reasons for this gross imbalance can be traced in 
large part to a preoccupation with algebraic symbol manipulation that borders on the bizarre. 

  

Challenges 

Fixing school mathematics requires attention to many significant (and overwhelming) issues 
such as teacher competence, recruitment, salaries, and performance; class size and classroom 
conditions; alignment of standards with textbooks and tests; and consistent support by 
parents, professionals, and politicians. Here I merely acknowledge these issues but do not deal 
with any of them.  

Instead, my primary purpose in this paper is to think through the goals of mathematics in 
grades 6-12 in light of the significant forces that are shaping the environment of school 
mathematics. These include: 

• Underperformance of U.S. students, especially in areas of mathematics that 
are seriously neglected in school instruction. 

• Continued support for tracking in an environment in which all students need 
high-quality mathematical experiences. 

• Employers' demand for performance competencies that cut across academic 
areas. 

• Changes in curricular priorities, pedagogical strategies, and career options 
due to the increasing mathematical power of technology. 

• Inconsistent expectations and misaligned tests that confront students as they 
finish high school and move on to postsecondary education. 

• Unprecedented increases in routine uses of mathematics and in the types of 
mathematics being used. 

• Extraordinary expansion in sophisticated applications of elementary 
mathematics. 
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• Increasing reliance on inferences from numerical evidence in political and 
policy debates. 

• Rapid growth in the use of computer-generated data, graphs, charts, and 
tables to present information. 

• Confusion about the relative importance of algebra as one among many 
mathematical subjects that students must learn. 

These environmental forces are not hidden. Everyone who is concerned for the quality of 
mathematics education is aware of them. Nonetheless, school mathematics continues to serve 
primarily as a conveyor belt to calculus that educates well only a minority of students. Many 
individuals and organizations have developed proposals for change (e.g., California, 1997; 
MSEB, 1998; NCTM, 2000; Achieve, 2001; NCED, 2001), but these proposals represent 
contrasting rather than consensus visions of school mathematics. 

The traditional curriculum in grades 6-12 is organized like a nine-layer cake: advanced 
arithmetic, percentages and ratios, elementary algebra, geometry, intermediate algebra, 
trigonometry, advanced algebra, pre-calculus, and (finally) calculus. Each subject builds on 
topics that precede it, and each topic serves as a foundation for something that follows. 
Although this sequence has the benefit of ensuring (at least on paper) that students are 
prepared for each topic by virtue of what has come before, the sequence does this at the 
expense of conveying a biased view of mathematics (since topics are stressed or ignored 
primarily on the basis of their utility as a tool in calculus) and creating a fragile educational 
environment (since each topic depends on mastery of most preceding material). The 
inevitable result can be seen all around us: most students drop out of mathematics after they 
encounter a first or second roadblock, while many of those who survive emerge with a 
distorted (and often negative) view of the subject. 

The intense verticality of the current mathematics curriculum not only encourages marginal 
students to drop out but also creates significant dissonance as states begin to introduce "high 
stakes" graduation tests. Inevitably, student performance will spread out as students move 
through a vertical curriculum–since any weakness generates a cascading series of problems in 
subsequent courses. The result is an enormous gap between curricular goals and a politically 
acceptable minimum requirement for high school graduation. Consequently, in most states, 
the only enforced mathematics performance level for high school graduation is an eighth or 
ninth grade standard. This large discrepancy between goals and achievement discredits 
education in the eyes of both parents and students. 

  

Breadth and Connectedness 

I suggest that the way to resolve these conflicts–and to address many of the environmental 
factors mentioned above–is to structure mathematics in grades 6-12 to stress breadth and 
connectedness rather than depth and dependency. Instead of selecting topics for their future 
utility, as prerequisites for something to follow but that most student will never see, select 
topics for current value in building linkages both within mathematics and between 
mathematics and the outside world. Instead of selecting topics for their contribution to the 
foundation of calculus, only one among many important parts of advanced mathematics, 
select topics for their contribution to a balanced repertoire of all the mathematical sciences. 
And in each grade, but especially in middle school, stress topics that contribute 
simultaneously to mathematics, statistics, and numeracy. 

A good place to start is with the revised NCTM standards (Appendix A). These ten standards, 
if treated with equal seriousness and supplemented with significant connections to the real 
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world, would provide a very strong framework for mathematics in grades 6-12. 
Unfortunately, "equal seriousness" is rarely present. Geometry, measurement, data analysis, 
and probability need as strong a presence in the curriculum as algebra and number. Similarly, 
reasoning, communication and connections need as much emphasis as problem solving and 
representation. 

There is an every-present danger that these NCTM goals will be viewed as mere rhetoric and 
that not much will change in the actual priorities of teachers or in the tests that districts and 
states use to monitor student performance. Taking all standards seriously means that students 
need to work with data as much as with equations, with measurements and units as much as 
with abstract numbers. To learn to communicate quantitatively, students need as much 
experience reading texts that use quantitative or logical arguments as they have with literary 
or historical texts. And they need experience not only with self-contained exercises of 
mathematics textbooks but also with realistic problems that require a combination of 
estimation, assumption, and analysis. 

To some, these broad goals may seem to move well beyond the security zone of objective, 
Platonic mathematics where proof and precision matter most and transformation of symbols 
replaces narrative explanations as a means of expressing thought. They do indeed move well 
beyond this protected arena, into the pragmatic world of mathematical practice broadly 
conceived. Yet it is only in this broad domain, not in the more restricted sphere of symbolic 
thinking, that mathematics can assert its warrant to special status in the school curriculum. (If 
it makes purists feel better, perhaps this curriculum should be identified, as the profession is, 
by the term "mathematical sciences.") 

To accomplish such a transformation, mathematics teachers must become diplomats, 
recruiting an alliance of teachers in other fields who will stress the role of mathematics in the 
subjects they teach. Mathematics can be seen both as a service subject (Howson, 1988) and a 
subject served. Art abounds with geometry; history with data and probability; music with 
ratios and series, science with measurement and algebra; economics with data and graphs. 
Every subject relies on, and teaches, the NCTM process standards such as reasoning, 
communication, and problem solving. To build breadth and secure connections, the 
mathematical sciences must be taught both in the mathematics classroom and in classrooms 
across the entire curriculum (Steen, 1997, Wallace, 1999). 

  

Middle Grades 

For several reasons, it is helpful to think of the seven years of grades 6-12 in three parts: the 
middle grades 6-8; the core high school grades 9-11; and the transition grade 12. To 
oversimplify (but not by much), the goal for grades 6-8 would be numeracy, for grades 9-11, 
mathematical sciences, and for grade 12, options. Data analysis, geometry, and algebra would 
constitute three equal content components both in grades 6-8 and 9-11. (In this simplified 
synopsis, measurement and probability can be viewed as part of data analysis, while number 
and operations can be viewed as part of algebra; discrete mathematics and combinatorics are 
embedded in every topic.) The five NCTM process standards cut across all topics and grade 
levels, but rather than being left to chance, they do need to be covered intentionally and 
systematically. 

Careful planning can ensure that the foundational parts of school mathematics are covered in 
grades 6-8, without tracking, but with multiple points of entry and many opportunities for 
mutual reinforcement. There are many different ways to do this, one of which is being 
developed by a dozen or so states belonging to the Mathematics Achievement Partnership 
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(Achieve, 2001). In a curriculum designed for breadth and connections, anything not learned 
the first time will appear again in a different context where it may be easier to learn. For 
example, graphing data gathered through measurement activities provides review of, or 
introduction to, algebra and geometry; finding lengths and angles via indirect measurements 
involves solving equations; and virtually every task in data analysis as well as many in 
algebra and geometry reinforce and extend skills involving number and calculation.  

Used this way, with intention and planning, linkages among parts of mathematics can be 
reinforcing rather than life-threatening. Instead of leading to frustration and withdrawal, a 
missing link can lead to exploration of alternative routes through different parts of 
mathematics. If middle school teachers give priority to topics and applications that form the 
core of quantitative literacy (NCED, 2001), students will encounter early in their school 
careers those parts of mathematics that are most widely used, most important for most people, 
and most likely to be of interest. More specialized topics can and should be postponed to 
grades 9-11. 

  

Secondary School 

In high school, all students should take three additional years of mathematics in grades 9-11, 
equally divided among data analysis, geometry, and algebra, but not sequentially organized. 
Parallel development is essential to build interconnections both within the mathematical 
sciences and with the many other subjects that students are studying at the same time. Parallel 
does not necessarily mean integrated, although it certainly could be in particular curricula. It 
does mean that in each grade, students advance significantly in their understanding of each 
component of the triad of data analysis, geometry, and algebra. Parallel development reduces 
the many disadvantages of the intense and unnecessary verticality  

The content of this curriculum would not differ very much from the recommendations in the 
NCTM standards. The core of mathematics–in data analysis, geometry, and algebra–is what it 
is and can neither be significantly changed nor totally avoided. However, there is considerable 
room for variation in implementation of specific curricula, notably in the examples that are 
used to motivate and illuminate the core. Appendix 2, adapted from a report of the National 
Center for Research in Vocational Education (Forman and Steen, 1999) offers some examples 
of important but neglected topics that can simultaneously reinforce mathematical concepts in 
the core and at the same time connect mathematics to ideas and topics in the world in which 
students live. Some recent textbooks (e.g., Pierce, et al., 1997) build on similar ideas.  

But perhaps even more important than an enriched variety of examples and topics would be a 
powerful emphasis on aspects of what NCTM calls process standards. As the practice of 
medicine involves far more than just diagnosing and prescribing, so the practice of 
mathematics involves far more than just deducing theorems or solving problems. It involves 
wide-ranging expertise that bring number and inference to bear on problems of everyday life. 
Part of learning mathematics is to experience the wide scope of its practice, which is what the 
process standards are all about. 

Some aspects of mathematical practice are entirely pragmatic, dealing with real systems and 
situations of considerable complexity. A mathematical education should prepare students to 
deal with the kinds of common situations in which a mathematical perspective is most 
helpful. Common examples include scheduling, modeling, allocating resources, and preparing 
budgets. In this computer age, students need also to learn to use the tools of modern 
technology (e.g., spreadsheets, statistical packages, Internet resources) to collect and organize 
data, to represent data visually, and to convert data from one form and system to another. 
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Performance standards for mathematics in the age of computers means performance with 
computer tools. 

Other aspects of mathematics are anchored more in logic than in practice, in drawing 
inferences rather than working with data. Ever since Euclid, mathematics has been defined by 
its reliance on deductive reasoning. But there are many other kinds of reasoning in which 
mathematical thinking plays an important role. Students finishing high school should have 
enough experience with different kinds of reasoning to understand the differences among 
them and the appropriate role for each. Examples:  

• Scientific Inference. Gathering data; detecting patterns, making conjectures; 
testing conjectures; drawing inferences; verifying vs. falsifying theories.  

• Legal Inference. Levels of convincing argument; persuasion and 
counterexamples; informal inference (suspicion, experience, likelihood); legal 
standards ("beyond reasonable doubt" vs. "preponderance of evidence"); 
logical trees in court decisions.  

• Mathematical Inference. Logical reasoning and deduction; assumptions and 
conclusions; axiomatic systems; theorems and proofs; proof by direct 
deduction, by indirect argument, and by "mathematical induction." Classical 
proofs (e.g., isosceles triangle, infinitude of primes, Pythagorean theorem).  

• Statistical Inference. Rationale for random samples; double blind 
experiments; surveys and polls; confidence intervals; causality vs. correlation; 
multiple and hidden factors, interaction effects. Judging validity of statistical 
claims in media reports.  

Both in practical situations of planning and modeling, as well as in the more 
intellectual sphere of reasoning and inference, these aspects of high school 
mathematics are well suited to reinforcement in other subjects. As previously noted, 
to build mathematical breadth and ensure lasting connections, mathematics must be 
taught, to some degree, in every subject and every classroom.  

I have argued for parallel development of the three legs of the mathematical stool–data 
analysis, geometry, and algebra–in order to maximize interconnections that are essential for 
long-term learning. But in grades 9-11 there is yet another very practical reason: the 
increasing number of state-mandated tests that are often set at the 10th grade level. These 
tests, if they are aligned with the goals of instruction, should treat all standards in a balanced 
manner. In particular, data analysis, geometry, and algebra should be equally present on 10th 
grade tests, so they must be equally present in the 9th and 10th grade courses. If high school 
courses remain layered as they are now, then state exams will continue to feature only algebra 
and geometry, leaving data analysis immature.  

  

Options 

Ideally, every student should study the same mathematics through grade eight, with only 
minor variation in examples to support different student interests and abilities. 
Accommodation to student differences in middle school should reflect student needs, not 
variations in anticipated career plans or college requirements. More instruction should be 
provided for students who need more support, more extensions for students who need greater 
challenges. Most students who are able to move rapidly through the core curriculum would be 
much better served with extensions that provide additional depth and variety rather than 
acceleration, especially with examples that open their minds to the many connections among 
mathematical topics and with diverse applications. (Acceleration may be appropriate for a 
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very few exceptionally talented students–fewer than one in a hundred–but only if they are 
able to pursue the entire curriculum at its deepest level. Acceleration of the core curriculum 
alone, without extensions, is pointless.) 

In high school, student interests emerge with greater strength and legitimacy, and both 
students and parents expect schools to provide some options. Historically, schools have tried 
to do this by a combination of two strategies: tracking and filtering. Both strategies amount to 
an abdication of educational responsibility. Weaker students were placed in commercial or 
general tracks that avoid algebra, thus barring them from further work in any quantitatively 
based field. Stronger students were immersed in a form of algebra that was designed to filter 
out students who did not appear capable of later success in calculus. The consequences of this 
strategy are well known: large numbers of students leave school both ignorant of and anxious 
about mathematics. 

It is possible to offer options without foreclosing students' futures. Three types of very 
successful programs can be found in today's schools: career, academic, and scientific. The 
first provides rigorous preparation for the high performance workplace, the second offers 
thorough preparation for college, the third offers advanced preparation for scientific careers. 
These programs vary in mathematical intensity and depth, but all provide students substantial 
experience with data analysis, geometry, and algebra. Each leaves students prepared for work 
and postsecondary education but at different mathematical levels, separated by approximately 
one year of mathematical study.  

Many educators argue vehemently against any tracks on the ground that they magnify 
inequities in educational advantage at a time when all students need to be equally prepared 
(rather than unequally prepared) for postsecondary education. Others argue that 
mathematically able students need a separate track to enable them to maintain their interest 
and fulfill their potential (Gavosto, et al.1999; Sheffield, 1999). Still others argue, for similar 
reasons, that many students will thrive better in a career-oriented track–especially one that 
stresses skills required for new high-performance, technologically intensive industries 
(Bottoms, 1993; Hoachlander, 1997). 

Research and practice show definitively that students learn better when they can fit new ideas 
into meaningful contexts (Askew, 1995). Since high school students have quite different 
interests, it makes sense to provide some choices in the context and setting of their 
mathematics courses. Moreover, given the variety of programs in higher education–ranging 
from technical certificates offered by community colleges to bachelor's degrees offered by 
liberal arts colleges, from majors in philosophy or art to hotel management and hazardous 
waste disposal–it is clear that student preparation can legitimately be varied. 

Thus one can imagine different settings for mathematics in grades 9-11, each achieving the 
same general goals but with rather different details. If rigorously delivered, a variety of 
substantive programs can prepare students for postsecondary education without remediation–
an important practical and political point. Whether the equations studied in algebra come from 
physics or automobile mechanics, or the data from economics or computer repair, what 
students learn about handling equations and data would be approximately the same. 
Differences among programs become weaknesses only if some programs leave students ill 
prepared for their future–either for work or for study. But options that differ primarily in 
specifics rather than in broad goals can serve all students well. 

Providing options in grades 9-11 does mean that students will finish the eleventh grade at 
different mathematical levels–some much more advanced than others. Especially in a subject 
like mathematics, wide variation in achievement is inevitable. By encouraging students to 
relate mathematics to their personal interests, all students' learning will be enhanced, but so 
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will variability. Success in mathematics education is not determined by the quantity of 
mathematics learned but by the ability and disposition to use a variety of mathematical tools 
in further work or study. It is far better for students to finish the required core of school 
mathematics willing and eager to learn more than to have mastered skills that they hope never 
to have to use again.  

Student options become fully realized in grade twelve when mathematics itself becomes 
optional. Ideally, schools should offer a wide choice of further mathematics–for example, 
calculus-readiness, computer graphics, mathematical modeling, computer science, statistics, 
or biomathematics–in part to show students how pervasive mathematics really is and how 
many options there are for continued study. These elective courses need not be offered every 
year since none are uniquely necessary for students further study and none are likely to be 
part of the testing associated with the school-college transition. Calculus itself can easily be 
left for college (except for the few students who can legitimately cover this entire program 
one year ahead of others.) One measure of success of a school's mathematics program would 
be the percentage of students who elect mathematics in twelfth grade. 

  

Synopsis 

To summarize, all middle school students would study a three-year non-tracked curriculum 
that provides equal and tightly linked introductions to data analysis, geometry, and algebra. 
When students enter high school, they would move into a second three-year mathematics 
curriculum that may provide some options based on student interests. No matter the emphasis, 
however, each high school program would advance equally the three main themes (data 
analysis, geometry, algebra) without letting any lag behind the others. Different programs 
may emphasize different contexts, different tools, and different depths. But each would leave 
students prepared both for the world of work and for postsecondary education. 

In this plan, high school graduation requirements (10th grade competence) would represent 
citizen-level quantitative literacy, one year behind mathematically prepared college admission 
(11th grade), which would be one year behind qualification for mathematically intensive 
college programs. Aiming for this three-step outcome of high school mathematics is more 
logical and more achievable than the imagined (but never achieved) ideal of having every 
student leave high school equally educated in mathematics and equally prepared for college 
admission. 

By studying a balanced curriculum, students would leave school better prepared for 
employment, more competitive with international peers, and well positioned for a variety of 
postsecondary programs. By experiencing breadth and connectedness rather than depth and 
verticality, students would have repeated opportunities to engage mathematics afresh as their 
own interests and attitudes evolve. By focusing on the symbiosis of computers and 
mathematics, students would experience how mathematics is practiced. And by studying a 
blend of mathematics, statistics, and numeracy, students would be flexibly prepared for life 
and work in the twenty-first century. 
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Appendix A: Standards for School Mathematics 

(Adapted from Principles and Standards for School Mathematics,  

National Council of Teachers of Mathematics, 2000) 

  

Content Standards: Instructional programs should enable all students, 

in number and operations, to 
   • understand numbers, ways of representing numbers, relationships among numbers, and 
number systems;  
   • understand meanings of operations and how they relate to one another;  
   • compute fluently and make reasonable estimates; 

in algebra, to 
   • understand patterns, relations, and functions;  
   • represent and analyze mathematical situations and structures using algebraic symbols;  
   • use mathematical models to represent and understand quantitative relationships;  
   • analyze change in various contexts; 

in geometry, to 
   • analyze characteristics and properties of two- and three-dimensional geometric shapes and 
develop mathematical arguments about geometric relationships;  
   • specify locations and describe spatial relationships using coordinate geometry and other 
representational systems;  
   • apply transformations and use symmetry to analyze mathematical situations;  
   • use visualization, spatial reasoning, and geometric modeling to solve problems; 

in measurement, to 
   • understand measurable attributes of objects and the units, systems, and processes of 
measurement;  
   • apply appropriate techniques, tools, and formulas to determine measurements; 

in data analysis and probability, to 
   • formulate questions that can be addressed with data and collect, organize, and display 
relevant data to answer them;  
   • select and use appropriate statistical methods to analyze data;  
   • develop and evaluate inferences and predictions that are based on data;  
   • understand and apply basic concepts of probability. 

Process Standards: Instructional programs should enable all students, 

in problem solving, to 
   • build new mathematical knowledge through problem solving;  
   • solve problems that arise in mathematics and in other contexts;  
   • apply and adapt a variety of appropriate strategies to solve problems;  
   • monitor and reflect on the process of mathematical problem solving; 

in reasoning and proof, to 
   • recognize reasoning and proof as fundamental aspects of mathematics;  
   • make and investigate mathematical conjectures;  
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   • develop and evaluate mathematical arguments and proofs;  
   • select and use various types of reasoning and methods of proof; 

in communication, to 
   • organize and consolidate their mathematical thinking through communication;  
   • communicate their mathematical thinking coherently and clearly to peers, teachers, and 
others;  
   • analyze and evaluate the mathematical thinking and strategies of others;  
   • use the language of mathematics to express mathematical ideas precisely; 

in connections, to 
   • recognize and use connections among mathematical ideas;  
   • understand how mathematical ideas interconnect and build on one another to produce a 
coherent whole;  
   • recognize and apply mathematics in contexts outside of mathematics;  

in representation, to 
   • create and use representations to organize, record, and communicate mathematical ideas;  
   • select, apply, and translate among mathematical representations to solve problems;  
   • use representations to model and interpret physical, social, and mathematical phenomena.  
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Appendix B: Selected Topics for School Mathematics 

(Adapted from Beyond Eighth Grade: Functional Mathematics for Life and Work, National 
Center for Research in Vocational Education, 1999) 

Geometry: In addition to standard topics (e.g., measurement of figures in two and three 
dimensions, congruence and similarity, reflections and rotations, triangle trigonometry, 
classical proofs and constructions), students should be introduced to:  

• Dimensions. Coordinate notation; dimension as factor in multivariable 
phenomena. Geometric dimension (linear, square, and cubic) vs. coordinate 
dimensions in multivariable phenomena. Proper vs. improper analogies. 
Discrete vs. continuous dimensions.  

• Dimensional Scaling. Linear, square, and cubic growth of length, area, and 
volume; physical and biological consequences. Fractal dimensions.  

• Spatial Geometry. Calculating angles in three-dimensions (e.g., meeting of 
roof trusses); building three-dimensional objects and drawing two-dimensional 
diagrams. Interpreting construction diagrams; nominal vs. true dimensions 
(e.g., of 2 x 4s); tolerances and perturbations in constructing three-
dimensional objects.  

• Global Positioning: Map projections, latitude and longitude, global positioning 
systems (GPS); local, regional, and global coordinate systems.  

Data: In addition to standard topics (e.g., ratios, percentages, averages, probabilities, ...) 
students should be introduced to: 

• Measurement. Estimating weights, lengths, and areas. Direct and indirect 
measurement. Use of appropriate instruments (rulers, tapes, micrometers, 
pacing, electronic gauges, plumb lines). Squaring corners in construction. 
Estimating tolerances. Detecting and correcting misalignments.  

• Calculation. Accurate paper-and-pencil methods for simple arithmetic and 
percentage calculations; calculator use for complex calculations; spreadsheet 
methods for problems with a lot of data. Use of mixed methods (mental, 
pencil, calculator). Strategies for checking reasonableness and accuracy. 
Significant digits; interval arithmetic; errors and tolerances. Accuracy of 
calculated measurements.  

• Mental Estimation. Quick, routine mental estimates of costs, distances, times. 
Estimating orders of magnitude. Reasoning with ratios and proportions. 
Mental checking of calculator and computer results. Estimating unknown 
quantities (e.g., number of high school students in a state or number of gas 
stations in a city).  

• Numbers. Whole numbers (integers), fractions (rational numbers), and 
irrational numbers (¼, ˆ2). Number line; mixed numbers; decimals, 
percentages. Prime numbers, factors; simple number theory; fundamental 
theorem of arithmetic. Binary numbers and simple binary arithmetic. Scientific 
notation; units and conversions. Number sense, including intuition about 
extreme numbers (lottery chances, national debt, astronomical distances).  

• Coding. Number representations (decimal, binary, octal, and hex coding). 
ASCII coding; check digits. Patterns in credit card, Social Security, telephone, 
license plate numbers. Passwords and PINS.  

• Index Numbers. Weighted averages. Definitions and abuses. Examples in the 
news: stock market averages; consumer price index; unemployment rate; 
SAT scores; college rankings.  
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• Data Analysis. Measures of central tendency (average, median, mode) and of 
spread (range, standard deviation, mid-range ,quartiles, percentiles). Visual 
displays of data (pie charts, scatter plots, bar graphs, box and whisker 
charts). Quality control charts. Recognizing and dealing with outliers.  

• Probability. Chance and randomness. Calculating odds in common situations 
(dice, coin tosses, card games); expected value. Random numbers; hot 
streaks. Binomial probability; binomial approximation of normal distribution. 
Computer simulations; estimating area by Monte Carlo methods. Two-way 
contingency tables; bias paradoxes.  

• Risk Analysis. Estimates of common risks (e.g., accidents, diseases, causes 
of death, lotteries). Confounding factors. Communicating and interpreting risk.  

Algebra. In addition to standard topics (e.g., variables, symbols, equations, relations, graphs, 
functions, slope, inequalities ) students should be introduced to:  

• Algorithms. Alternative arithmetic algorithms; flow charts; loops; constructing 
algorithms; maximum time vs. average time comparisons.  

• Graphs. Sketching and interpreting graphs; translating between words and 
graphs (and vice versa) without intervening formulas.  

• Growth and Variation. Linear, exponential, quadratic, harmonic, and normal 
curve patterns. Examples of situations that fit these patterns (bacterial growth, 
length of day) and of those that do not (e.g., height vs. weight; income 
distribution).  

• Financial Mathematics. Personal finance; loans, annuities, insurance. 
Investment instruments (stocks, mortgages, bonds).  

• Exponential Growth. Examples (population growth, radioactivity, compound 
interest) where rate of change is proportional to size; doubling time and half-
life as characteristics of exponential phenomena; ordinary and log-scaled 
graphs.  

• Normal Curve. Examples (e.g., distribution of heights, repeated 
measurements, production tolerances) of phenomena that distribute in a bell-
shaped curve and examples that do not (e.g., income, grades, typographical 
errors, life spans). Area as measure of probability. Meaning of 1-, 2-, and 3σ.  

• Parabolic Patterns. Examples (falling bodies, optimization, acceleration) that 
generate quadratic phenomena; relation to parabolic curves.  

• Cyclic functions. Examples (time of sunrise, sound waves, biological rhythms) 
that exhibit cyclic behavior. Graphs of sin and cos; consequences of sin2 
θ + cos2 θ = 1.  
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